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Abstract 
Since the nature of mathematical model of an aircraft is extremely nonlinear and             
controlling the state variables have always been highly challenging tasks for the            
researchers, therefore, this paper presents an ANN (Artificial Neural Network) based           
control architecture to control the longitudinal dynamics of an aircraft by controlling            
the longitudinal motion of the aircraft. The proposed controller serves as an            
altitude-hold autopilot system which holds the aircraft at a desired altitude as            
assistance to the pilot. Using sigmoid activation function with multilayer network and            
back-propagation supervised learning; the NN (Neural Network) plant model is          
trained offline. The control algorithm is based on NN model predictive control            
architecture where the controller first predicts the future plant behavior for the given             
range of control inputs using NN plant model and then using optimization algorithm a              
set of potential control inputs are computed to optimize the future plant responses.             
The proposed model is tested for 500 and 1000 ft step inputs and a pulse input                
ranging from 0-1000 ft. The simulation results show that the model is working under              
altitude-hold autopilot mode smoothly without any overshoot and steady-state error. 
 
Key Words: Boeing 747, Altitude-Hold Autopilot, Longitudinal Control, Artificial 

Neural Network, Back-Propagation. 
 
I. INTRODUCTION 
 
The evolution of the airplanes from piston-engine airplanes to jets has triggered the             
advancement of the designing and development of heavier-than-air flying machines is           
a complex and convoluted task and plays an important role in the growth of civil and                
military aviation. Modern aircrafts are built with various automatic flight control           
systems that aid the pilots in a flight. On the one hand, the most common reason for                 
plane crashes is human error, so it can be consoling to know that aircraft systems are                
designed to be automatized, reflexive, and intelligent.  
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An aircraft automatic pilot system controls the aircraft without the pilot directly            
maneuvering the controls. The autopilot maintains the aircraft’s attitude and/or          
direction and returns the aircraft to that condition when it is displaced from it.              
Automatic pilot systems are capable of keeping aircraft stabilized laterally, vertically,           
and longitudinally. Development of artificially intelligent systems sophisticated        
enough to control various modes and can achieve several flight tasks. One of the              
major tasks of the autopilot is to hold the specific altitude. These conventional             
autopilot systems are controlled by artificial intelligence-based systems and designed          
by mathematical models to control the maneuvering of an aircraft. Some of the             
challenges faced by researchers during the mathematical modelling and the controller           
design for an aircraft are discussed below.  
 

● Autopilot is one of the essential functions for aircraft controls. Autopilot           
system’s performance directly affects the mission success and performance of          
aircraft [1]. 

● In recent times it is the most important realization of aeronautic engineers that             
much more improvements are required in efficiency of autopilot systems [2]. 

● The design of an aircraft control system is a very challenging control problem             
because of many reasons. Some are listed below: 

● The dynamics of the aircraft are highly non-linear. 
● The parameters of the aircraft change with environment as well as operating            

conditions.  
 
There are a number of aircraft control systems. These include lateral control, altitude             
control, speed control and safe landing control etc. A lot of literature has been              
investigated for aircraft control systems, some adaptive strategies are: 
 

● AI (​Artificial Intelligence​) based adaptive control design of autopilot system          
for nonlinear UAV (​Unmanned Aerial Vehicle)​ [3]. 

● Self-tuning fuzzy PID (​Proportional Integral Derivative) controller design for         
aircraft pitch control [4]. 

● Gain scheduling control [5]. 
 
Literature is available on altitude-hold autopilot control of an aircraft. Some of the             
control algorithms which have been used as altitude-hold autopilots are as under: 
 

● PID Controller [6]. 
● SAS (Stability Augmentation System) [7]. 
● Two-time-scale cascade decomposition [8]. 
● Sliding mode controller along with feedback linearization [9]. 

 
The main problem of the above linear techniques is that they require an accurate              
mathematical model which is usually not available. It is therefore a need of time to               
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investigate those techniques which do not rely upon mathematical model. One of the             
pilot’s many tasks is to hold the specific altitude. A well-trained pilot can control the               
altitude manually but requires a very sharp eye on the control of aircraft. It is a real                 
time control affected by many external factors and all techniques are based on linear              
systems. So, for realistic nonlinear systems, a best choice is ANN based control             
systems. We intend to develop a FFANN (Feed-Forward Artificial Neural Network)           
with three layers which is trained to behave as an autopilot, and hold the required               
altitude for specific time. 
 
I.1 Objectives 
 
The specific objectives of this research study are as follows: 
 
(1) Selection of mathematical model of an aircraft for generation of data for training             

of the proposed altitude-hold autopilot. 
(2) Simulation of the model in MATLAB/SIMULINK and analysis of the system. 
(3) Development of ANN controllers as altitude hold autopilot 
(4) Testing of the closed loop system with simulation studies. 
 
I.2 Methodology to Achieve the Control Objectives 
 
The methodology to achieve the aforementioned objectives is based on the selection            
of a mathematical model for the longitudinal dynamics of an aircraft from the             
literature review. The model will be first validated and then it will be used for the                
generation of data for the ANN. Once the sufficient data is generated, it will be then                
used to train the ANN structure. Precisely, a back propagation neural network            
structure on supervised learning method will be trained by optimizing its weights.            
Later this trained structure will be used in the ANN controller for the altitude-hold              
autopilot system. The proposed aircraft model will be tested for different transient and             
steady state conditions to evaluate its stability. The vital role of this ANN control              
algorithm is to generate a suitable signal for the elevator surface of the aircraft to               
maintain a constant altitude.  
 
The description of the proposed research study, literature review, derived objectives           
of this study and workable methodology have been presented in the above section. In              
Section 2, the mathematical model for the longitudinal dynamics of an aircraft is             
presented. Section 3 covers the generic algorithm of artificial neural network along            
with back-propagation which will be used to train the data generated from the             
mathematical model of the aircraft. The control law for the altitude-hold autopilot is             
developed in Section 4. The simulation results developed in MATLAB and           
SIMULINK are presented and discussed in Section 5. Finally, the contribution of this             
research study and outcome is discussed in the conclusion in Section 6.  
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II. LONGITUDINAL DYNAMICS MODELLING OF AN 

AIRCRAFT  
 
An airplane is a powered, fixed-wing aircraft that is propelled forward by thrust from              
a jet engine, propeller or rocket engine. An aircraft needs a power source to provide               
the thrust necessary to obtain lift. Basic principle of every airplane is almost the same,               
whether the most advanced high-performance jet or the simplest aircraft. Aircraft can            
move within its fixed determined axes in two ways. It can translate, that is changing               
location, from one point to another point or can rotate, and that is changing its               
attitude.  
 
Control system engineering plays a significant role in designing high-performance          
airplane. The motion of an aircraft is particularly complex because the rotations and             
translations are coupled together; a rotation affects the magnitude and direction of the             
forces which in turn affects translations. In this study Boeing 747 is considered for the               
analysis of the altitude-hold autopilot system. As per the first objective of the study,              
the mathematical model of the aircraft (Boeing 747) from [10] has been selected for              
the generation of data for training of the proposed altitude-hold autopilot based on             
artificial neural networks. Fig. 1 shows the schematic diagram of Boeing 747 with the              
coordinate frames which move with the aircraft. It is important to mention here that              
since this study is focusing on the altitude-hold autopilot system, therefore, only            
longitudinal equations of motion are considered. 
 
 

 
FIG. 1. REFERENCE FRAMES OF AN AIRCRAFT [10] 

 
Where x, y, z are position coordinates, u, v, w are velocity coordinates, p is roll rate,                 
q is pitch rate, r is yaw rate, ​φ is roll angles, θ is pitch angle, ψ is yaw angle, β is                      
side-slip angle, and α is angle of attack. 
 
The generic mathematical model of Boeing 747 is an eighth order model; comprising             
of both longitudinal and lateral motion. The longitudinal motion is based on axial (X),              
vertical (Z), and pitching (θ,q) motion whereas the lateral motion contains rolling            
(​φ​,p) along with yawing (r,β) movement as shown in Fig. 1. The longitudinal motion              
is driven by the elevator surfaces and the engine throttle and the lateral motion is               
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controlled by ailerons and rudder control. The coupled equations of motion for the             
translational motion and rotational motion are given in Equations (1-2), respectively.           
The reader is referred to [10] for the derivation of Equations (1-2). However, these              
equations are nonlinear in nature and the linearization of Equations (1-2) is carried out              
in Section 2.1.  
 

 (1) 

 (2) 
 
Where m is mass of the aircraft, [U,V,W] is body axis components of the velocity of                
the center of mass (cm), 

 

 
[U​0​, V​0​, W​0​]  = reference velocities 
[p, q, r] = the body-axis components angular velocity of the aircraft 
[X, Y, Z]= the body-axis aerodynamics forces about the cm. 
[L, M, N] = the body-axis aerodynamics torque about the cm. 
g​0​= the gravitational force per unit mass 
I​i ​= the inertia in body axes 
(θ, ∅) = the Euler pitch and angle of the aircraft body axes with respect to horizontal. 
V​ref​= reference flight speed 
T= Propulsive thrust resultant 
𝜅​= the angle between thrust and body x-axis. 
 
II.1 Linearization of the Equations of Motion 
 
These equations can be linearized with the following assumptions;         

, which implies to the steady state, straight, level, and          
constant speed flight. In addition, if the turning in any axis is ignored then we have p​0                 
= q​0 =r​0 = 0 and when the wings are level then ​φ =0. Moreover, due to the presence                   
of an angle of attack to provide some lift to balance the aircraft’s weight θ​0 ​and W​0 ≠                  
0. We further define  
 
U = U​o​ +u  
V = V​o​+v (3) 
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W = W​o​+w 
 
Components of steady state velocity body axis can be expressed as  
 
U​o​ =V​ref​cos(θ​o​)  
V​o​ = 0 (β​0​ = 0) (4) 
W​o​ =V​ref​sin(θ​o​) 
 
With these conditions, equilibrium equations can be redefined as 
 
0 = X​0​– mg​o​sinθ​o​ + ​𝜅​T cosθ​o (5) 
0= Y​0 
0= Z​0 + ​mg​o​cosθ​o​ - ​𝜅​T sinθ​o 
0= L​0 
0= M​0 
0= N​0 
 
With the following assumptions. 
 
(v​2​, w​2​) << u​2 (6) 
(​φ​2​, θ​2​) << 1, 

 
 
Where b is wingspan 
 
Since, in this study longitudinal motion is considered, therefore, only the longitudinal            
equations of motion are selected for the development of altitude-hold autopilot           
system. The uncoupled fourth-order set of linearized longitudinal dynamics         
representing the perturbation in longitudinal (U,W,θ, and q) motion can be           
represented as  
 

(7) 
 
Where u is forward velocity perturbation in the aircraft in x-direction, w is velocity              
perpetuation in the z-direction, q is angular rate about the positive y-axis, or pitch              
rate, θ is pitch angle perturbation from the reference θ​0 ​value, X​u,w,δe is partial              
derivatives of aerodynamics force in x-direction with respect to perturbation in u,w,            
and δe (X,Z,M are stability derivatives and are defined from wind tunnels and flight              
tests), Z​u,w,δe ​is partial derivatives of aerodynamics forces in z-direction with respect to             
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perturbation in u, w, and δe, M​u,w,q,δe is partial derivatives of aerodynamics moment             
with respect to perturbation in u, w, q, and δe, and δe is movable tail-selection or                
“elevator” angle for pitch control. 
 
In order to capture the altitude variation, Equation (8) is added to the longitudinal              
equation of motion, i.e. in Equation (7). In should be noted that Equation (9) is the                
linearized form of Equation (8). 
 

 (8) 

 (9) 
 
For the purpose of illustration as given in [10], in horizontal flight of Boeing 747 with                
a weight of 637,000 lb the longitudinal perturbation equations of motion at 20,000 ft              
with nominal speed of 830 ft/sec can be expressed as follows: 
 

            (10) 
 

 
(11) 
 
The parameters of matrix F and G are same as given in [10]. Here the desired output                 
of the altitude hold autopilot can be defined as: 
  
 h = Hx(12) 

            (12) 
 
A frequently used concept to analyze and design a control system is the transfer              
function. This helps in analyzing the stability of a system under various input             
conditions. The open loop transfer function for the system given in the Equation (11)              
can be obtained as [10]. 
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             (13) 
 
Altitude-hold autopilot control tasks is not straight forward and carried out in more             
than one feedback loops as shown in Fig. 2. The inner loop is relating the pitch rate q                  
to δe to improve the damping of the aircraft. Damping can be further improved if the                
pitch angle θ is added in the same inner feedback loop [10].  
 

 
FIG. 2. ALTITUDE-HOLD AUTOPILOT FEEDBACK CONTROL SYSTEM OF AN AIRCRAFT 

[10] 
 
The effectiveness of inner-loop is essential to make the outer-loop successful which is             
based on altitude h feedback system. With the given inner-loop the modified transfer             
function from elevator angle δe to the altitude h can be expressed as  
 

             (14) 
 
As per methodology given in Section 1.2, in Fig. 3 response of the inner-loop has               
been validated against the 2​o (0.035-rad) step command in θ as given in Fig. 3 [10].                
This ensures that the proposed model can be used for the generation of data for ANN                
architecture.  
 

 
FIG. 3. STEP INPUT COMMAND IN Θ IN THE INNER-LOOPFOR THE AUTOPILOT 

ALTITUDE-HOLD 
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For the outer feedback loop, a PID controller is used in this study to achieve the                
desired altitude. The transfer function of the overall system, with both inner and outer              
loops, can be defined as: 
 

            ​(15) 
 
Equation (15) will be used for the generation of required data for the ANN to               
maintain the desired altitude during autopilot altitude-hold mode. The following          
section presents the generic architecture of the ANN.  
 
III. ANN AND BACK PROPAGATION ALGORITHM 
 
ANN is a computational model based on the structure and functions of biological             
neural networks. It is like an artificial human nervous system for receiving,            
processing, and transmitting information. A simple artificial neuron having a single           
input layer (x) and output layer (y) is called a perceptron. The inputs given to a                
perceptron are processed by summation function and followed by activation function           
to get the desired output [11] as shown in Fig. 4. The significant features of the ANNs                 
for the intelligent control’s advantage are that they do not require programming and             
learn from experience, their processing speed is high and can be implemented in             
real-time condition, their capacity to generalize from given training data to unseen            
data; most importantly they fail with prior warning rather than abruptly.  
 
The fundamental architecture of a single artificial neuron comprises of a weighted            
summer and an activation (or transfer) functions as shown in Fig. 4.  
 
Where x​1​…x​j are inputs, w​i1​…w​ij are weights, b is a bias, f is the activation function,                
y is the output. 
 

 
FIG. 4. STRUCTURE OF SINGLE LAYER PERCEPTRON (BIOLOGICALLY A NEURON) 

 
Then the weighted sum z can be defined as: 
 

27 



Gyancity Journal of Electronics and Computer Science,  
Vol. 5, No. 2, pp. 19-34, September 2020 

ISSN:​ ​2446-2918​ ​DOI:​ 10.21058/gjecs.2020.52003 
 

            (16) 
 
Where the output y can be expressed as: 

 

y = f(W​
T​
X + b)            (17) 

 
Where 
 
z = W​T​X + b z             (18) 
 
The activation function (f) has different types but the most popular one is the sigmoid               
activation function as represented in Equation (19) and shown in Fig. 5.  
 

            (19) 

 
FIG. 5. ACTIVATION FUNCTION (SIGMOID) 

 
Usually, there are two types of perceptron; single layer and multilayer. A MLP             
(Multilayer Perceptron) consists of input layer, hidden layer (one or more than one             
hidden layer) and output layer as shown in Fig. 6. The single layer is limited to only                 
learn linearly separable patterns, whereas, the multilayer which is also called FFNN            
can have more processing power depending upon the number of hidden layers [12].  
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FIG. 6. A MULTILAYER PERCEPTRON 
 
Learning of a NN can be defined as the process of tuning or regulating the weights                
and biases such that for the potential input signal the required output can be acquired.               
There are two methods of learning which has been discussed in the literature [13].  
 

(i) Supervised Learning: In the supervised learning, a data which consists of           
inputs commands and its corresponding output responses is provided to          
train the neural network plant model. During this training process the           
weights are adjusted until the error between desired output and actual           
output reaches a minimum value. This is mostly used for dynamics system            
where feedback control system is required.  

(ii) Unsupervised Learning: On the contrary, unsupervised learning method is         
based on the open-loop control algorithm where the plant state doesn’t           
need any adjustment based on feedback approach. Such method is used for            
image recognition, image compression, speech recognition, etc.  

 
For controlling the altitude control, we are using back-propagation supervised          
learning of artificial neural networks using gradient descent. Its uses error function            
which will calculate the gradient of the error function with respect to the weights of               
the neural network. For MLFFP (Multilayer Feed-Forward Perceptron) have input          
layer, output layer and hidden layers-where all the computations are done. 
 
If network has units in layer i and b units in layer i+1, then w​i ​will be of dimension   a                  
b×(a+1). Here we are taking bias as x₀ and a₀, respectively. Vector-X reposting the              
nodes of input layer and Vector-A representing the hidden layer, where 
 

 
 
The Equations (16-17) and by generalizing the multiple hidden layers and multiple            
nodes in each of the layer we can represent the MLFFP as follows: 
 

             (20) 
 

We measure how good this output by using cost function C and desire result in              
output layer y called MSE (Mean Squared Error). Loss function is calculated for the              
entire training dataset and their average is called the Cost function C. 
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             (21) 
 
Basic purpose of the back propagation is to bring the error function to minimum. For               
further derivation of the back propagation algorithm, the readers are referred to            
[14-15].  
 
IV. CONTROL ALGORITHM FOR THE ALTITUDE-HOLD 

AUTOPILOT SYSTEM 
 
The ANN architectures have been explained in the previous section. In this section             
the control algorithm for the altitude-hold autopilot system will be presented. In            
literature, a variety of ANN architectures for prediction and control have been used             
such as model predictive control [16], model reference adaptive control [17], and            
feedback linearization control [18]. Figs. 7-9 show the individual ANN architectures           
of these three controllers, respectively. It is widely known that the MLP-NN can be              
efficiently used with these controller for a wide range of applications of the dynamic              
systems [14]. However, in this study NN model predictive control architecture (Fig.            
7) is used for the training of aircraft data.  
 

 
FIG.  7. NEURAL NETWORK MODEL PREDICTIVE CONTROL 

 
FIG. 8. NEURAL NETWORK REFERENCE MODEL CONTROL ARCHITECTURE 
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FIG. 9. NEURAL NETWORK FEEDBACK LINEARIZATION CONTROL 

 
Each of these control architectures has its advantages and limitations. A comparison            
of these three controllers is given in [11,14] and based on the findings of this               
literature study NN model predictive control architecture is used in          
MATLAB/SIMULINK environment. Fig. 10 shows the block diagram of the overall           
model to work as an altitude-hold autopilot system. ANN controller block is used             
with the aircraft model (Equation (15) where the controller first predicts the future             
plant behavior for given range of control inputs using NN model. In the second stage               
a set of control inputs are determined using an optimization algorithm which optimize             
the future plant responses. Here, the NN plant model, using any desired activation             
function, any MLPNN and back-propagation training, is trained offline. Finally, the           
optimized control inputs are given to the actual plant model. The proposed aircraft             
model is analyzed for different step inputs and during the transient and steady-state             
maneuvers. The next section presents the results and discussion based on the model             
and control algorithm discussed in the above sections.  

 
FIG. 10. FEEDBACK CONTROL SYSTEM FOR THE AIRCRAFT MODEL USING ANN 

CONTROLLER 
 
V. RESULTS AND DISCUSSION  
 
This section presents the results and discussion to evaluate that how by using the              
proposed methodology this study has achieved the objectives extracted from the           
literature review. After the validation of the mathematical model of the aircraft for the              
autopilot altitude-hold in Fig. 3, it became feasible to use the same model for the               
generation of data for ANN. MATLAB and SIMULINK have been used for the             
simulation of the entire model. For the transfer function of the aircraft model             
MATLAB has been used whereas SIMULINK has been used for the ANN Controller             
as shown in Fig. 10. The final simulations are executed in the SIMULINK model              
which is an integrated part of MATLAB.  
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The ANN controller has been trained for desired altitude ranging from 0-1000 feet in              
this study. The aircraft model is then simulated for the step input commands of 500               
feet (Fig. 11) and 1000 feet (Fig. 12) with the simulation time of 30 sec to analyze the                  
autopilot altitude-hold response of the aircraft. The aircraft model is also simulated            
for a pulse input command ranging from 0-1000 feet and back to 0 feet (Fig. 13) with                 
the simulation time of 100 sec to investigate the transient as well as steady-state              
response of the aircraft during the sharp maneuvers. It can be observed from Figs.              
11-12 that the proposed ANN controller is smoothly achieving the desired objectives            
and activating the autopilot altitude-hold mode within a suitable time without any            
overshoot and steady-state error.  

 
FIG. 11. STEP RESPONSE OF ALTITUDE-HOLD AUTOPILOT TO A 500-FT STEP COMMAND 

 
FIG. 12. STEP RESPONSE OF ALTITUDE-HOLD AUTOPILOT TO A 500-FT STEP COMMAND 

 
For further testing the performance of the proposed ANN control algorithm, the            
Boeing 747 model is further investigated under transient maneuvers as shown in Fig.             
13. The result shows that the aircraft model is responding very well to the desired               
signal and achieving the expected results during transient input. These simulation           
results ensure that the proposed model is capable of maintaining any altitude within             
the given training data.  
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FIG. 13. STEP RESPONSE OF ALTITUDE-HOLD AUTOPILOT TO A 500-FT STEP COMMAND 

 
VI. CONCLUSION 
 
This study presents altitude-hold autopilot system for the Boeing 747 aircraft based            
on the ANN. The adopted mathematical model was suitable to capture the aircraft             
longitudinal dynamics in continuous-time domain. The results of the aircraft model           
were validated with the previous studies and this ensured that this model can be used               
for the generation of data for ANN. For the control design generic architecture of NN               
with sigmoid activation function and back-propagation technique is discussed.         
Finally, three different control approaches; model predictive control, model reference          
adaptive control, and feedback linearization control were reviewed to be used with the             
neural network plant model for the training of the aircraft model. Using the neural              
network model predictive architecture, the aircraft model was analyzed for 500 and            
1000 feet step inputs and a pulse input ranging from 0-1000 feet. It was observed that                
the plant is following the given desired input and achieving all the objectives of this               
study with promising performance.  
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