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Abstract 

In this research article, particle swarm optimization (PSO) algorithm with variable 
weights and robust disturbance rejection (RDR) controller used to control the height 
of unmanned aerial vehicle (UAV). To solve the problem of controller parameters and 
robustness in obtaining a set of optimal solutions for the attitude control movements of 
the quadrotor UAV. The algorithm designed in this article is mainly composed of two 
parts; the first one in accordance with the iterative process, the distance of swarm 
particles with the variable weight of the dynamic change in the particle size of the 
global optimum set the coefficient to control its impact on the degree of inertial weight. 
The global optimal value of the result shows that the optimization algorithm is effective 
to adjust the parameters of the designed controller, which in result guarantee the 
quality in the control of the UAV and improve the design efficiency. 
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1. Introduction 

Unmanned aerial vehicles (UAVs), commonly known as drones, have found a wide 
range of applications during the past few years due to their low cost, efficiency and 
high mobility. UAVs have generally used in the military, deployed in remote and 
hostile areas where they perform their operations without endangering pilot lives. In 
the present era, these aircrafts are in high demand because they are much safer and more 
convenient than traditional aircrafts [1] and [2]. UAVs generally classified into two 
types based on their weight lifting capacity, engine type, range and maximum altitude 
etc. The first one fixed wing, these aircraft usually have high speed but they could only 
fly in continuous motion because of fixed mechanical structure. Second, one is the 
rotary wing aircraft such as UAVs; they are able to fly in any direction stand stationary 
in the air, able to hold on specific altitude in the air [3]. In reference [4] fuzzy PID 
controller and PID controller discussed, which plays an important role in achieving the 
stable attitude angle control of the aircraft, but there are some limitations that it has 
poor adaptability and can use for indoor flight operations. There is a huge demand of 
anti-interference control technology, where the aircraft requires high control accuracy 
and faces tremendous external interferences that provides stable and better flights 
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results. Such as in reference [5], in order to minimize the air interferences and wind 
turbulences a self-immunity controller designed. 

In reference [6] a cascade system of proportional derivative and active disturbance 
control proposed. In that controller the parameters of outer loop is control by PD 
controller and inner loop controlling done by ADRC. The use of PD control structure 
is easy and simple whereas Adaptive disturbance rejection controller (ADRC) has 
strong decoupling ability to minimize the internal and external interference. In 
reference [7] the theories of higher order sliding mode observer (HSMC) introduced in 
the ADRC which in result improved the ADRC, so that the controller has better control 
effects. Although there are several advantages of the ADRC like the accurate 
mathematical, model which is independent of the object, enhanced ability to estimate 
and compensate the uncertainties. However, there is no proper parameters for the tuning 
methods, using artificial error methods to make an efficient control system of the 
aircraft [8]. In reference [9] the parameters of adaptive disturbance rejection controller 
using particle swarm optimization PSO were discussed. On the other hand, there are 
some issues of local optimization and slow convergence in the standard particle swarm 
algorithm. By adjusting ADRC controller parameter of the quadrotor UAV using the 
variable weight hybrid particle swarm optimization algorithm the above problems can 
be resolved [10]. The whole article comprised of the following sections. Section I of 
the paper consists of an introduction, in section II the modelling of the UAV discussed. 
The adaptive disturbance rejection controller defined in section III of this paper. In 
section IV the improved particle swarm optimization algorithm is discussed. The 
complete article concluded in section V of this paper. 
 
2. Modelling of the UAV 

The dynamics of the quad-rotor aircraft used for the mathematical modelling 
and the kinematic equation of Euler angles of the UAV taken from [11] and [12]; 

𝑥̈ =
(𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜓) ∗ 𝑢1

𝑚
 

𝑦̈ =
(𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 + 𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜓) ∗ 𝑢1

𝑚
 

𝑧̈ = −𝑔 +
(𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜃) ∗ 𝑢1

𝑚
− 𝑔 

𝜑̈ = 𝜃̇𝜓̇ (
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
) +

1𝑢2
𝐼𝑥

 

𝜃̈ = 𝜑̇𝜓̇ (
𝐼𝑧 − 𝐼𝑥
𝐼𝑦

) +
1𝑢3
𝐼𝑦

 

𝜓̈ = 𝜑̇𝜃̇ (
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
) +

1𝑢4
𝐼𝑧

 

(01) 

 In equation (1) x, y, z are the geographic coordinate system of the quadrotor UAV 

also known as Earth coordinates, ∅, θ, ѱ are coordinate positions under reference 

coordinate system defined as roll angle, pitch angle and yaw angle. The Ix, Iy, Iz are the 

three moments of inertia around x, y, z axes, g is the acceleration due to gravity of the 

aircraft, m is defined as the quality of the aircraft u1, u2, u3, u4 for the system control 

amount, the relationship with the quadrotor speed parameters as follows: 



Gyancity Journal of Engineering and Technology,  

Vol.6, No.1, pp. 1-8, January 2020 

ISSN: 2456-0065 DOI: 10.21058/gjet.2019.61001 

  3 
 

3 

𝑢1 = 𝑘𝑡(𝜇1
2 + 𝜇2

2 + 𝜇3
2 + 𝜇4

2) 

𝑢2 = 𝑘𝑡(𝜇1
2 − 𝜇3

2) 

𝑢3 = 𝑘𝑡(𝜇2
2 − 𝜇4

2) 

𝑢4 = 𝑘𝑑(𝜇1
2 − 𝜇2

2 + 𝜇3
2 − 𝜇4

2) 

(02) 

 
3. Robust disturbance rejection controller 

The quadrotor robust disturbance controller define by the second order tracking 
differentiator TD, arrange the transition process, according to the set value yd arrange 
the transition process yd1 and extract the differential signal yd2.  

{𝑒 = 𝑦𝑑1 − 𝑦𝑑𝑦𝑑1 = 𝑦𝑑1 + ℎ𝑦𝑑2𝑦𝑑2 = 𝑦𝑑2 + ℎ𝑔𝑠𝑡(𝑒, 𝑦𝑑2, 𝑟, ℎ0) (03) 

In equation (3), h is the step, the h0 and h are independent factors which has a filtering 
effect also called as the filter factor. The r determines the tracking speed of the input 
signal differentiator, known as speed factor, gst function is the most rapid control 
function which is; 

𝑢 = 𝑔𝑠𝑡(𝑦1, 𝑦2, 𝑟, ℎ) (04) 

According to controlled object, the expanded state observer ESO input u1 and output 
y. The estimated state of controlled objects Z1, Z2 and the total amount of disturbance 
by the object Z3. 

{𝑒 = 𝑍1 − 𝑦 ≥ 𝑔𝑎𝑙(𝑒, 𝛼1)𝑔𝑒1 = 𝑔𝑎𝑙(𝑒, 𝛼2)𝑍1 = 𝑍1 + ℎ(𝑍2 − 𝛾01𝑒)𝑍2
= 𝑍2 + ℎ(𝑍3 − 𝛾02 ≥ +𝑏𝑢)𝑍3 = 𝑍3 + ℎ(−𝑔𝑒1) 

(05) 

In equation (5) γ01, γ02 are greater than zero and require a proper adjustment of the 
parameter, 0<∝1, ∝2 <1 usually take α1=0.5, α2=0.25, b is a constant, gal is the function 
of linear range width. The function of gal is defined as: 

𝑔𝑎𝑙(𝑒, 𝛼) = {|𝑒|𝛼. 𝑠𝑖𝑔𝑛(𝑒), 0 (06) 

In equation (6) the value of α is taken as 0.5. Nonlinear error feedback law, according 
to the input to in e1, e2 and Z3 in order to determine the final amount of controlled object 
u1. 

{𝑒1 = 𝑦𝑑1 − 𝑍1𝑒2 = 𝑦𝑑2 − 𝑍2𝑢10 = 𝛾1𝑔𝑎𝑙(𝑒1, 𝛼1) + 𝛾2𝑔𝑎𝑙(𝑒2, 𝛼2)𝑢1 = 𝑢10 −
𝑍3
𝑏

 (07) 

In equation (7) the gal function definition is same as defined in equation (6), but the 
value of α is different, in order to achieve good robustness and adaptability in the 
controller select the appropriate parameters γ1  and γ2. 

 

 
 
4. Particle swarm optimization 

The particle swarm optimization (PSO) is an optimization algorithm. Each particle 
of particle swarm optimization. It provides a possible set solution, which provides 
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ultimate solution of the problems. By interacting with other particles, in order to find 
the optimal solution to the problem it constantly update itself with the status 
information of the entire population [13-15]. 

The particle group in N dimensional space consisting on M particles, here Xi=xi1, xi2, 
xi3, xi4…..xin x represents the ith  position of a particle in the nth dimensional space. 
Vi=(vi1, vi2, vi3….vin) here v represents the ith particle speed of Pg=(pg1, pg2, pg3, 
pg4….pgn). 

Each particle in PSO continuously update its velocity and position in space in an 
iterative process by its own population optimal values as shown in equation (9) and 
(10). 

𝑉𝑘𝑑
𝑘+1 = 𝜔𝑉𝑖𝑑

𝑘 + 𝑐1𝑟1(𝑃𝑖𝑑
𝑘 − 𝑋𝑖𝑑

𝑘 ) + 𝑐2𝑟2(𝑃𝑔𝑑
𝑘 − 𝑋𝑖𝑑

𝑘 ) (08) 

 

𝑋𝑖𝑑
𝑘+1 = 𝑋𝑖𝑑

𝑘 + 𝑉𝑖𝑑
𝑘+1 (09) 

In equation (9), (10) ω is the inertial weight; d=1,2,3,……n; i=1,2,3,….m; c1, c2 is 
the acceleration factor, whose value is greater than zero. r1, r2 is a random number 
distributed in the interval of 0, 1; k is defined as number of current iterations.  

The ω defines the inertial weights which reflects the velocity of the particles that has 
the same previous ability. Y presents linear decrement inertia weights, as shown in 
equation (10), if the inertia weight value is large it favors global search, while the 
smaller inertia weight value is more conductive to local search. 

In below equation the inertial weight ω used to define the velocity of the particle. 

𝜔(𝑘) =
𝜔𝑚𝑎𝑥 − 𝑘(𝜔𝑚𝑎𝑥 −𝜔𝑚𝑖𝑛)

𝑇𝑚𝑎𝑥
 (10) 

Where ωmax and ωmin for the maximum and minimum inertia weight value, Tmax is 
the maximum number of iterations. 
 
4.1. Improved basic flow of particle swarm algorithm 

1. In order to select maximum history and optimal particles set the position and 
velocity of all particles as per the fitness function value criteria. 

2. Calculate the distance between each particle and the current global optimal 
position, get Lki max, Lki min from equation (8) update the inertia weight of each 
particle in next iteration ω. 

3. According to equation (8), (9), (10), update the position and velocity of each 
particle and calculate the fitness value. 

4. The current value replaces the historical optimal value, if the current fitness 
value of the particle is better than its historical optimal value. 

5. Replace the global optimal value, if the particle is better than the global 
historical optimal value. 
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6. Determine whether the hybridization conditions that are continuous H 
generation global optimal value remains unchanged, in the implementation of 
step 7. 

7. Determine whether the termination condition is satisfied, the output is global 
optimal, otherwise step 2. 

 
4.2. Particle swarm algorithm RDR controller 

The mathematics of the quadrotor aircraft build in MATLAB/Simulink aircraft 
simulation model and design RDR controller pair UAV height and three-attitude angles 
to control. By combining RDR controllers with improved particle swarm optimization 
(PSO), select the maximum impact on the performance of RDR six parameters, using 
particle swarm optimization tuning, which ESO take γ01, γ02, γ1, γ2 and b such as shown 
in figure 1 below. 

Figure: 1 Error performance indicators 
 
5. Simulation results analysis 

In this part of the manuscript, the robustness of the designed controller is defined. 
The parameters of quadrotor UAV is defined in table 1, and table 2 of this article 
contains PSO-RDR initialization parameters. The overall simulation model divided into 
two groups one is the altitude curve and the other one is no. of iterations for 
optimization. From figure 2, it shows the altitude curve of the UAV in which it can be 
clearly seen that in a 25 second time period, the combination of PSO-RDR perform 
better in achieving the reference height of 4.5 meters as compared to the traditional 
PSO controller. Although it can also observe from the simulated result that designed 
controller has better robustness and quick convergence speed. 

Similarly, figure 3 shows that standard particle swarm optimization algorithm 
converges after 4 iterations, while the robust disturbance rejection based PSO algorithm 
converges after about 3 iterations this conclusion also shows the quick convergence 
response of the designed controller. 

Table 1: Quadrotor Parameters 
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Parameters Values Units 

𝑚 0.888 𝑘𝑔 

𝑙 0.2335 𝑚 

𝐼𝑥 0.01896 𝑘𝑔.𝑚2 

𝐼𝑦  0.01896 𝑘𝑔.𝑚2 

𝐼𝑧 0.00939 𝑘𝑔.𝑚2 

 
Table 2: Improved PSO Initialization Parameter 

Parameters Values Parameters 

𝜔𝑚𝑎𝑥  0.9 𝜔𝑚𝑎𝑥  

𝜔𝑚𝑖𝑛  0.4 𝜔𝑚𝑖𝑛 

𝑐1, 𝑐1 2 𝑐1, 𝑐1 

Particle swarm size 20 Particle swarm size 

Number of iterations 50 Number of iterations 

ℎ 10 ℎ 

Figure: 2 Height control curve of UAV 

  
Figure: 3 No. of iterations for optimization 

 
5. Conclusion 

To conclude this article, it is observed that the designed PSO-RDR controller have 
better convergence speed for maneuvering control the altitude of UAV. To prove the 
efficiency of the proposed controller the results of both the standard PSO controller and 
robust disturbance rejection based PSO are compared in Simulink simulations, which 
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shows the effectiveness of the designed controller. It can achieve precise and fast 
control of the height and attitude of the aircraft to improve the efficiency of flight 
control designed system. 
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